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Luminance-Chrominance Model for Image Colorization∗

F. Pierre†, J.-F. Aujol‡, A. Bugeau§, N. Papadakis‡, and V.-T. Ta¶

Abstract. This paper provides a new method to colorize gray-scale images. While the computation of the
luminance channel is directly performed by a linear transformation, the colorization process is an
ill-posed problem that requires some priors. In the literature two classes of approach exist. The first
class includes manual methods that need the user to manually add colors on the image to colorize.
The second class includes exemplar-based approaches where a color image, with a similar semantic
content, is provided as input to the method. These two types of priors have their own advantages and
drawbacks. In this paper, a new variational framework for exemplar-based colorization is proposed.
A nonlocal approach is used to find relevant color in the source image in order to suggest colors
on the gray-scale image. The spatial coherency of the result as well as the final color selection is
provided by a nonconvex variational framework based on a total variation. An efficient primal-dual
algorithm is provided, and a proof of its convergence is proposed. In this work, we also extend
the proposed exemplar-based approach to combine both exemplar-based and manual methods. It
provides a single framework that unifies advantages of both approaches. Finally, experiments and
comparisons with state-of-the-art methods illustrate the efficiency of our proposal.
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1. Introduction. The colorization of a gray-scale image consists of adding color informa-
tion to it. It is useful in the entertainment industry to make old productions more attractive.
The reverse operation is based on perceptual assumptions and is today an active research
area [28], [13], [37]. Colorization can also be used to add information in order to help further
analysis of the image by a user (e.g., sensor fusion [43]). It can also be used for art restora-
tion; see, e.g., [17] or [41]. It is an old subject that began with the ability of screens and
devices to display colors. A seminal approach consists in mapping each level of gray into a
color-space [18]. Nevertheless, all colors cannot be recovered without an additional prior. In
the existing approaches, priors can be added in two ways: with a direct addition of color on
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Talence, France, and LaBRI, UMR 5800, Université de Bordeaux, F-33400 Talence, France, and LaBRI, UMR 5800,
CNRS, F-33400 Talence, France (fabien.pierre@math.u-bordeaux.fr).
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§LaBRI, UMR 5800, Université de Bordeaux, F-33400 Talence, France, and CNRS, LaBRI, UMR 5800, CNRS,
F-33400 Talence, France (aurelie.bugeau@labri.fr).

¶LaBRI, UMR 5800, CNRS, F-33400 Talence, France, and LaBRI, UMR 5800, Bordeaux INP, F-33402 Talence,
France (ta@labri.fr).

536

http://www.siam.org/journals/siims/8-1/97936.html
mailto:fabien.pierre@math.u-bordeaux.fr
mailto:jean-francois.aujol@math.u-bordeaux.fr
mailto:nicolas.papadakis@math.u-bordeaux.fr
mailto:aurelie.bugeau@labri.fr
mailto:ta@labri.fr


LUMINANCE-CHROMINANCE MODEL FOR IMAGE COLORIZATION 537

the image performed by a user or by providing a color image as an example (also called a
source image). In the rest of this paper, we call the gray-scale image to colorize a target.

1.1. State-of-the-art. In the first category of methods, a user manually adds points of
color (also called scribbles) on the target image. Numerous methods have been proposed
based on this type of approach. For instance, the method of Levin, Lischinski, and Weiss [30]
solves an optimization problem to diffuse the scribbles onto the target with the assumption
that chrominances must have small variations if the luminance has small variations. Yatziv
and Sapiro [42] propose a simple but fast method by using geodesic distances to blend the
chrominances given by the scribbles. Heu et al. [22] use pixel priorities to ensure that im-
portant areas end up with the right colors. Other propagation schemes have been proposed:
for instance, probabilistic distance transform [29], random walks [26], discriminative textural
features [25], structure tensors [16], or nonlocal graph regularization [31]. As often described
in the literature, with these color diffusion approaches, the contours are not well preserved.
Quang, Kang, and Le [35] propose a variational approach in the chromaticity and brightness
space to interpolate the missing colors. Reproducing kernel Hilbert spaces are used to per-
form a link between the chrominance and the brightness channels. In [15], the scribbles are
automatically generated after segmenting the image and the user only needs to associate one
color to each scribble. The colorization is further performed by computing quaternion wavelet
phases so that the color is propagated along equal phase lines. The contours are therefore
well preserved. As in the case with all manual methods, this latter approach suffers from the
following drawbacks: if the target represents a complex scene, the segmentation might not be
very accurate and the user interaction becomes very important.

In exemplar-based colorization methods, the color information is provided by a source
color image selected by the user. The first exemplar-based method is the one proposed by
Welsh, Ashikhmin, and Mueller [40] (derived from a texture synthesis algorithm [39]). It
uses patch similarities in the colorization process. The authors of [40] also propose manual
information (called swatches) to specify where to search patches in the source image. Di Blasi
and Reforgiato [14] propose an improvement that accelerates the search of patches with tree-
clustering. Chen and Ye [10] propose an improvement based on a Bayesian image matting.
Generally, exemplar-based approaches suffer from spatial consistency problems since each pixel
is processed independently. To overcome this limitation, several works use image segmentation
to improve the colorization results. For instance, Irony, Cohen-Or, and Lischinski [23] propose
to compute the best matches between the target pixels and regions in a presegmented source
image. With these correspondences, microscribbles from the source are initialized on the
target image and colors are finally propagated as in [30]. In [38], the authors use image
segmentation to colorize cartoon images. Chia et al. [11] take advantage of the huge amount
of images available on the Internet. Nevertheless, the user has to manually segment and label
the objects of the target image. Next, for each labeled object, images with the same label are
found on the Internet and used as source images. The image retrieval step relies on superpixels
extraction [36] and graph-based optimization. Gupta et al. [20] extract different features from
the superpixels [36] of the target image and match them with the source ones. The final color
for each pixel is computed by optimizing a criterion imposing spatial consistency as in [30].
Charpiat, Hofmann, and Schölkopf [8] ensure spatial coherency without segmenting, but their
method involves many complex steps.
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1.2. The approach of Bugeau, Ta, and Papadakis [4]. Without requiring image seg-
mentation or superpixels extraction, Bugeau, Ta, and Papadakis [4] compute a set of color
candidates for each target pixel by matching patches with the source image using different
features.

In the following, the target image is considered to correspond to the luminance channel Y
of the YUV color-space. In order to preserve the initial gray-scale image content, colorization
methods always impose that the luminance channel Y must be maintained. As most existing
colorization methods do, [4] only computes the two chrominance channels (here U and V).
Their method works as follows. First, the source image is converted into a luminance one.
In order to be comparable to the target, an affine remapping [21] is applied to the source
luminance. Next, for each pixel of the target image, the method extracts eight chrominance
candidates ci with i = 1, . . . , 8 from the source. To that end, the patch centered on each
pixel in the target is compared to randomly chosen luminance patches in the source. (See
[40] and [4] for more details.) Different features and different size of patches are used, with
each configuration (eight in total) leading to one candidate. The best chrominance is finally
chosen within the eight candidates with an energy-based method. To ensure the regularity of
the resulting image u, the model includes a total variation (TV) regularization of the U and
V channels.

The approach proposed by Bugeau, Ta, and Papadakis [4], which we call chrominance
model, is invariant w.r.t. the scene illumination, but the method only retains the U and V
values. This extraction is not hue consistent and can produce new colors unrelated to those of
the source. Moreover, in their regularization algorithm, there is no coupling of the chrominance
channels with the luminance leading to halo effects near strong contours. In order to reduce
this effect, a strong regularization is needed, leading to the drab results mentioned in [4]. To
overcome this limitation, a postprocessing is applied on the chrominance channels, but the
contours are not always well preserved (see [33]). Another drawback is the computational
time due to projections onto the simplex. Nevertheless, this approach is simple and provides
promising results.

1.3. Contributions. The optimization algorithm of [4] is inspired by the one of Chambolle
and Pock [6] that is dedicated to the convex problem. Some algorithms have been designed
for nonconvex problem. The most adapted of them to our framework is probably PALM of
Bolte, Sabach, and Teboulle [2], which is much slower than the algorithm we propose here to
compute the minimizer of our functional. For the model of [4], it requires an internal loop
which slows down the algorithm. To tackle this issue, it is preferable to design a new algorithm
dedicated to this particular problem. The model proposed in this paper is inspired by the
work of [4], but its formulation has advantages. The proposed functional is convex w.r.t. each
of its variables. From this new model, we design a new algorithm, adapted from [6], whose
convergence is theoretically proven. Notice that recently there have been some major advances
in the minimization of convex optimization; see, e.g., [1] and references therein. However,
these approaches rely on the technical Kurdyka–�Lojasiewicz (KL) inequality (ensuring that
the functional to minimize is not too flat around its minimizer(s)). A main advantage of the
approach proposed here is that we do not need to check that the KL inequality is fulfilled.

The main contributions of this work are the improvements and the simplification of the
model proposed by [4] and the introduction of a coupled regularization term that preserves
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image contours during the colorization process. (These two points are presented in the first
section.) Another contribution is the design of an algorithm and the proof of its conver-
gence, although the functional to minimize is not convex (this is presented in section 2.3);
the proposal of a second simpler algorithm is provided in section 2.4. The proposed model
and its implementation are simple, and we can easily demonstrate its convergence to a critical
point. Comparisons with several state-of-the-art methods in terms of colorization results are
presented in section 3. For numerical experiments, we propose to use an approach combining
both exemplar and manual priors. A preliminary version of this combination was published
in [34]. This new paper presents in detail the theoretical framework of the variational model
and the proof of convergence of the algorithm.

2. Variational image colorization model. This section describes the two parts of our
approach. First, we detail the extraction of color candidates based on texture features. Second,
we deal with the choice of the best candidate in order to provide a regular image.

2.1. Candidates extraction. In this section, we describe the method to extract candidates
based on texture features. This method has been experimentally chosen in [4].

The target image is considered to correspond to the luminance channel Y of the YUV
color-space. First, the source image is converted into a gray-scale one. An affine luminance
remapping [21] is applied in order to match the histograms from the source and the target.
Next, for each pixel of the target image, the method compares the patch centered on the pixel
with some of the gray-scale version of the source. The comparison is performed with different
metrics and patch sizes (in order to take into account the scale of textures) based on standard-
deviation, discrete Fourier transform (DFT), and cumulative histogram. For each metric, the
method retains the pixel in the source image having the nearest patch (see Figure 1). At
the end of this step, each pixel of the target is associated with eight pixels from the source.
The corresponding chrominances of the source form the set of color candidates. In practice,
as in [33], we do not directly use the chrominances from the source. Indeed, they may have
different luminances compared to the one of the target pixel. Instead, we first retain the RGB

(a) Search of the candidates. (b) Subsampling on a regular grid.

Figure 1. For each pixel of the target image, the method compares the patch centered on the pixel with ones
of the gray-scale version of the source. Next, the method retains the color of the central pixel of the closest patch
(see (a)). To speed up the algorithm, the search is not performed among all pixels but only on a subsampling
(see (b)).
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Figure 2. The first part of the method finds C candidates per pixel (here C = 8).

color and project it onto the right luminance using an oblique projection that preserves the
hue [33].

With various sizes of patches and different features, [4] proposes to retain eight candidates
per pixel. A choice has to be made among these candidates to colorize the image. Figure 2
shows an example of a target image and the representation of the set of eight candidates for
two pixels. In this paper, the number of retained candidates is denoted by C.

2.2. The luminance-chrominance model. In this work, we propose to improve the chro-
minance model of [4] by introducing a different TV regularization term and by simplifying
their work. Our model is able to couple the channels of luminance and chrominances. It will
be called in what follows the luminance-chrominance model.

2.2.1. The proposed functional. To choose a candidate among those extracted, we now
propose to minimize the following functional, where u = (U, V ) stands for chrominances to
compute, ci for the candidates, and w = {wi} with i = 1, . . . , C for the candidate weights:

F (u,w) := TVC(u) +
λ

2

∫
Ω

C∑
i=1

wi‖u− ci‖22 + χR(u) + χΔ(w) .(2.1)

To simplify the notation, the dependence of each values to the position of the current pixel
is removed. For instance, the second term of (2.1) denotes

∫
Ω

∑C
i=1 wi(ω)‖u(ω) − ci(ω)‖22 dω.

This model is a classical one with a fidelity-data term
∫
Ω

∑C
i=1wi‖u− ci‖22 and a regular-

ization term TVC(u). Since the first step of the method extracts many candidates, we propose
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averaging the fidelity-data term issued from each candidate. This average is weighted by wi.
Thus, the term

(2.2)

∫
Ω

C∑
i=1

wi‖u− ci‖22

connects the candidate color ci to the color u that will be retained. The minimum of this
term w.r.t. u is reached when u is equal to the weighted average of candidates ci.

Since the average is weighted by wi, these weights are constrained to be onto the probability
simplex. This constraint is formalized by χΔ(w) whose value is 0 if w ∈ Δ and +∞ otherwise,
with Δ defined as

(2.3) Δ :=

{
(w1, . . . , wC) s.t. 0 ≤ wi ≤ 1 and

C∑
i=1

wi = 1

}
.

If wj = 1 and wi = 0 for i �= j, then the minimum w.r.t. u is reached for u = cj and it
provides a label. The joint minimization of the term (2.2) w.r.t. u and w provides a natural
labeling, where ci are labels. In addition, the characteristic function χR(u) constrains the
result to be in the set R, which is the standard range for the chrominances.

In (2.1), TVC is the regularization term which will be defined in (2.4). It favors the
most regular solution among all the labelings. The parameter λ weights the influence of the
regularization term of the model.

2.2.2. The coupled total variation. The chrominance model of [4] suffers from a lack of
coupling in the regularization term, leading to halo effects in the colorization results. To cope
with this issue, we introduce a TV regularization which is able to couple the chrominance
channels with the luminance one. Although [33] and [32] propose a simple coupling performed
by working directly in the RGB color-space, the convergence of these algorithms is not estab-
lished. By coupling channels in the YUV color-space, we propose in this paper a model and
an algorithm for which the convergence is proven.

Let TVC be a coupled total variation defined as

(2.4) TVC(u) =

∫
Ω

√
γ∂xY 2 + γ∂yY 2 + ∂xU2 + ∂yU2 + ∂xV 2 + ∂yV 2 ,

where Y , U , and V are the luminance and chrominance channels. γ is a parameter which
enforces the coupling of the channels. Some others total variation formulations have been
proposed to couple the channels; see, for instance, [24] or [5].

As Figure 3 illustrates, this formulation naturally favors images where contours in chromi-
nance channels are at the same location as the luminance one. For the sake of clarity, assume
that there is a vertical contour in the Y channel, ∂xY = a > 0 and ∂yY = 0, and another
one in the U channel such that ∂xU = b > 0, ∂yU = ∂xV = ∂yV = 0. If the two contours

are at the same location, the value of the total variation is equal to TVC(u) =
√

γa2 + b2, but
if the contours have different locations, the value is equal to TVC(u) =

√
γa2 +

√
b2. Since√

γa2 + b2 <
√

γa2 +
√
b2 when γ > 0, the minimization of TVC encourages the values of U

such that the contours in the chrominance channels are in the same location as the luminance
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(a) TVC =
√

γa2 + b2 (b) TVC =
√

γa2 +
√
b2

Figure 3. Illustration of two situations for contours in luminance and chrominance channels. Since√
γa2 + b2 <

√
γa2 +

√
b2 when γ > 0, TVC favors coupling of channels, contrary to the TV on chrominance

channels only, which values are equal for the situations (a) and (b).

(a) Scribbles (b) γ = 0 (c) γ = 1 (d) γ = 25

Figure 4. Comparison of the TV on chrominance channels only (b) and our TVC term (2.4) (c) and (d)
with different values of γ.

one. In some cases, the minimization of TVC will prefer the shortest contour perimeter for
the chrominance channels, rather than the coupling with the luminance one. Adding a high
value for γ limits this problem by enforcing the coupling between luminance and chrominance
channels.

To illustrate the advantage of TVC, we propose a reduced model that diffuses colors man-
ually added by the user on some pixels of the gray-scale image. In other words, we use this
coupled TV within a manual colorization method by minimizing the following functional:

(2.5) min
u

TVC(u) +
λ

2
‖M(u− f)‖22 + χR(u) ,

where f are chrominances defined by the user, M is a mask which is equal to 1 if the user
puts a color on the gray-scale image, and 0 otherwise. u is the chrominance to compute. λ
is a parameter which rules the influence of the regularization. To solve this problem, it is
possible to use the algorithm of [6]. Experiments on a toy example are presented in Figure 4.
They illustrate the advantage of TVC compared to a TV on chrominance channels only (as
proposed in [4]). With the TV on chrominance channels only (Figure 4(b)), no coupling with
the luminance channel is available, and the transition between the red and the blue color is
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computed without considering the main gray-scale image contour. With our coupled total
variation (2.4) and γ = 1 (Figure 4(c)), the coupling is done, but the contour is not perfectly
respected since the regularization term here favors the shortest contour perimeter on the
chrominance channels. By increasing the γ value (Figure 4(d)), the contour is well preserved
since we enforce the minimization to preserve the Y channel. In experimental results, we
choose γ = 25.

2.3. A first algorithm and its convergence. Recently, a primal-dual algorithm has been
proposed by Chambolle and Pock with various applications to image processing [6]. It inspired
us to provide a new algorithm dedicated to a particular class of problems based on a nonconvex
functional. To apply this technique, we express our functional into a min-max problem. To
this end, we rewrite the term TVC from (2.4) in a dual form. In a Hilbert space with norm
‖.‖ =

√〈.|.〉,
(2.6) ‖f‖ = max

‖x‖≤1
〈f |x〉,

which can also be rewritten as

(2.7) ‖f‖ = max
x
〈f |x〉 − χ‖x‖2≤1.

In R
6, it becomes

(2.8)
∥∥∥√‖q1‖2 + ‖q2‖2 + ‖q3‖2

∥∥∥
1

= max
p1,p2,p3

〈q1, q2, q3|p1, p2, p3〉 − χ‖(p1,p2,p3)‖2≤1,

where p, q ∈ R
6 and pj, qj ∈ R

2, j = 1, . . . , 3.
Applied to q1 = ∇U , q2 = ∇V , and q3 = γ∇Y with γ > 0,

(2.9)∥∥∥√‖∇U‖2 + ‖∇V ‖2 + γ‖∇Y ‖2
∥∥∥
1

= max
p1,p2,p3

〈∇U,∇V |p1, p2〉+ γ 〈∇Y |p3〉 − χ‖(p1,p2,p3)‖2≤1.

Thus,

(2.10) TVC(U, V ) = max
p=(p1,p2,p3)

〈∇U,∇V |p1, p2〉+ γ 〈∇Y |p3〉 − χ‖(p1,p2,p3)‖2≤1.

Minimizing (2.1) is equivalent to maximizing the dual model w.r.t. to the dual variable p and
to minimizing it w.r.t. u and w.

Our problem (2.1) is a particular case of

(2.11) min
u∈U

min
w∈W

max
p∈P
〈Ku|p〉 − F ∗(p) + G(u) + h(u,w) + H(w) ,

where G : U → [0,+∞), F ∗ : P → [0,+∞) , H : W → [0,+∞), and h : (U ×W) → [0,+∞)
are proper lower semicontinuous functions. F ∗, G, and H are convex, and h is convex w.r.t.
each of its variables separately. K is a continuous linear mapping. ∀u ∈ U , h(u, .) + H is
lower semicontinuous, proper, and convex. This last statement can be replaced by a weaker
one: in all the following, it is sufficient that ∀u ∈ U , h(u, .) + H is lower semicontinuous,
coercive, and proper. Remark that the functional is not convex w.r.t. (u,w).
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To apply this general model to (2.1), we can set H = χΔ, K = ∇, h(u,w) =
∫
Ω

∑C
i=1wi‖u−

ci‖22, and F ∗ = χB2(0,1). Remark that h is a biconvex function (see, e.g., [19]). This function
has many partial minima which are not generally global. We now define partial optimum.

Definition 2.1. Let B be a biconvex set and f : B → R be a given function and let (x, y) ∈
B. Then, (x, y) is called a partial optimum of f on B if

(2.12) f(x,y) ≤ f(x, y) ∀x ∈ By and f(x, y) ≤ f(x, y) ∀y ∈ Bx

with Bx := {y ∈ Y : (x, y) ∈ B} and By := {x ∈ X : (x, y) ∈ B}.
Since h is differentiable, we can define stationary points.
Definition 2.2. Let f : Rn → R be a given function, let ζ ∈ R

n, and let the partial deriva-
tives of f in ζ exist. If ∇f(ζ) = 0, then ζ is called a stationary point of f .

The following proposition provides a characterization of partial optimum.
Proposition 2.3. Let f : Rn ×R

m → R be a differentiable, biconvex function. Then a point
z ∈ R

n+m is stationary if and only if z is a partial optimum.
Since functional (2.11) is not convex, the definition of a saddle-point for the primal vari-

ables (u,w) and the dual one p does not make sense. So, let us extend the definition of
saddle-points. Consider a generic saddle-point problem (2.11). For a given w ∈ W, the
reduced problem

(2.13) min
u∈U

max
p∈P
〈Ku|p〉 − F ∗(p) + G(u) + h(u,w)

is equivalent to the one of [6], and it admits a saddle-point (û, p̂) such that ∀(u, p, w) ∈
U × P ×W:

(2.14) 〈Ku|p̂〉 − F ∗(p̂) + G(u) + h(u,w) ≥ 〈Kû|p〉 − F ∗(p) + G(û) + h(û, w).

Moreover, for a given u ∈ U , the problem

(2.15) min
w∈W

H(w) + h(u,w)

admits a minimizer ŵ such that ∀w ∈ W,

(2.16) H(w) + h(u,w) ≥ H(ŵ) + h(u, ŵ).

Definition 2.4. We call a pseudo saddle-point of the problem (2.11) a point (û, p̂, ŵ) ∈
U × P ×W such that ∀(u, p, w) ∈ U × P ×W,

(2.17)
〈Ku|p̂〉 − F ∗(p̂) + G(u) + h(u,w) + H(w) + h(u,w)

≥ 〈Kû|p〉 − F ∗(p) + G(û) + H(ŵ) + h(u, ŵ) + h(û, w).

The existence of such points is stated in Lemma A.1.
We call a critical pseudo saddle-point of the problem (2.11) a point (û, p̂, ŵ) ∈ U ×P ×W

such that ∀(u, p, w) ∈ U × P ×W,

(2.18)
〈Ku|p̂〉 − F ∗(p̂) + G(u) + h(û, w) + H(w) + h(u, ŵ)

≥ 〈Kû|p〉 − F ∗(p) + G(û) + H(ŵ) + 2h(û, ŵ).
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2.3.1. General algorithm. Algorithm 1 is the most general primal-dual-like algorithm
presented in this paper.

Algorithm 1. Primal-dual-like algorithm.
1: for n ≥ 0 do
2: pn+1 ← proxσF ∗ (pn + σKun)
3: wn+1 ← proxρH+ρh(un,.) (wn)

4: un+1 ← proxτG+τh(.,wn+1)

(
un − τK∗pn+1

)
5: un+1 ← 2un+1 − un

6: end for

Parameters ρ, τ , and σ are the time steps. For a function F proper, convex, and lower

semi-continuous, proxF (p̃) is defined as argminp
‖p−p̃‖22

2 + F (p); see, e.g., [12].
We recall two definitions used in Theorem 2.7. First, the definition of isolated points is

presented.
Definition 2.5. The point of a subset of R

n are isolated if ∃ε > 0 such that ∀x, y ∈ S,
‖x− y‖ ≥ ε.

Next, the definition of a cluster point is presented.
Definition 2.6. A cluster point of a sequence is the limit of one of its subsequence.
Algorithm 1 converges to a critical pseudo saddle-point of the problem (2.11) under some

conditions stated in Theorem 2.7.
Theorem 2.7. Let L = ‖K‖ and assume that the problem (2.11) admits a saddle-point

(û, p̂, ŵ). Choose τσL2 < 1, ρ > 0 and let (un, pn, wn) be defined in Algorithm 1. For the sake
of simplicity, assume that U , P, and W are of finite dimension.

(a) Then ∀n > 0

(2.19)

‖pn − p̂‖22
2σ

+
‖un − û‖22

2τ
+
‖wn − ŵ‖22

2ρ

≤ β

(‖p0 − p̂‖22
2σ

+
‖u0 − û‖22

2τ
+
‖w0 − ŵ‖22

2ρ

)
,

where β ≤ (1− τσL2)−1. Thus, the sequence is bounded.
(b) There exists a cluster point which is a fixed-point of Algorithm 1.
(c) Assume that the critical pseudo saddle-points are isolated. Thus there exists a fixed-

point (u∗, p∗, w∗) such that the sequence (un, pn, wn) converges to it.
The proof of convergence of Theorem 2.7, given in Appendix B, needs the existence of a

pseudo saddle-point. The existence of such points for primal-dual problems of type (2.11) is
stated in Lemma A.1.

The theoretical result of Theorem 2.7 is not directly applicable, but it provides a framework
to propose a convergent algorithm studied in the next section. Indeed, in the case of the
functional (2.1), the critical pseudo saddle-points are not isolated.

2.3.2. Application to the colorization problem. In our case, the hypotheses of Theo-
rem 2.7 are not verified. The convergence of the sequence wn to one of its fixed-points is
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nevertheless demonstrated for the following model:

(2.20) min
w

min
u

max
p
〈Ku|p〉 − F ∗(p) +

λ

2

∫
Ω

C∑
i=1

wi‖u− ci‖22 + χE(w) + χR(u).

χE is the indicator function of the canonical basis of R
C . Its value is 0 if w ∈ E , and +∞

otherwise. This model differs from the original one (2.1) by the term χE(w), which ensures
that the cluster points of the sequence wn produced by Algorithm 1 are isolated. In order to
project a vector w̃ onto E , we have to compute a minimizer of ‖w− w̃‖22 +χE(w). To that end,
an index i corresponding of one of the minima of (wi− w̃i)

2 is first computed. The solution is
then given by (0, . . . , 1, 0, . . . , 0) with 1 in ith position. When there are at least two maxima,
the algorithm chooses an arbitrary one among them.

The following lemma justifies the simplification of the model (2.1) into the model (2.20).
Lemma 2.8. Assume that u∗ is a uniform real-valued random variable over the set [0, 255]2.

Let us denote E the canonical basis of RC .
The set of minimizers of

(2.21)

∫
Ω

C∑
i=1

wi‖u∗ − ci‖22 + χΔ(w)

is reduced to a point w∗(u∗) almost everywhere (a.e.).
Moreover, the one of

(2.22)

∫
Ω

C∑
i=1

wi‖u∗ − ci‖22 + χE(w)

is reduced to a point w∗∗(u∗) a.e. When these two minimizers are unique, w∗∗(u∗) = w∗(u∗).
Proof. u∗ is in [0, 255]2. We distinguish two cases.
Let us first consider the case when there exists i such that

(2.23) ∀j ∈ {1, . . . , C} with i �= j , ‖u∗ − ci‖22 < ‖u∗ − cj‖22.

In this first case, the minimum of (2.21) and (2.22) is reached in (0, . . . , 1, 0, . . . , 0) with 1 in
ith position, and thus the minimizer of (2.21) is unique and is equal to the one of (2.22).

Let us now consider the event A =“there exist at least two candidates ci and cj such that
‖u∗ − ci‖22 = ‖u∗ − cj‖22 ≤ ‖u∗ − ck‖22 ∀k ∈ {1, . . . , C}.” In this case, neither minimizers of
(2.21) nor the ones of (2.22) are necessarily unique. But, the set of such points u∗ is the set of
points in [0, 255]2, which are at equal distance of two points of [0, 255]2. It corresponds to the
intersection of a line and [0, 255]2 denoted by S. Since S is of measure 0, and the set of such
S is finite when the number of candidates is finite, A is of measure 0. Thus, the event where
neither minimizers of (2.21) nor the ones of (2.22) are necessarily unique is of probability 0.
Finally, the minimizers of (2.21) and (2.22) are unique and equal a.e.
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For our problem, the algorithm becomes Algorithm 2.

Algorithm 2. Minimization of (2.20).

1: for n > 0 do
2: pn+1 ← PB (pn + σ∇un)
3: wn+1 ← PE

(
wn − ρλ(‖un − ci‖22)i

)
4: un+1 ← PR

⎛
⎝un + τ

(
div(pn+1) + λ

∑C
i=1w

n+1
i ci

)
1 + τλ

⎞
⎠

5: un+1 ← 2un+1 − un

6: end for

Parameters ρ, τ , and σ are the time steps. The operator div stands for the divergence.
The algorithm requires the projection of the three estimated variables u, p, w. The projection
PR is necessary to ensure that the estimated image stays in the standard range of chrominance
values R. Precisely1

(2.24) PR(U, V ) = (max(min(U,Umax), Umin),max(min(V, Vmax), Vmin)) .

Finally the projection of the dual variable PB ensures the respect of the constraint
χ‖(p1,p2,p3)‖2≤1, by projecting p onto the L2 unit ball. The following equation gives this pro-
jection for a pixel at position (l, k):

(2.25) PB
(
pl,k

)
=

(
pl,k1 , pl,k2 , pl,k3 − σ (∂xY, ∂yY )l,k

)
max

(
1,
∥∥∥(pl,k1 , pl,k2 , pl,k3 − σ (∂xY, ∂yY )l,k)

∥∥∥2
2

) .

The projection PE of a point onto a vector of the canonical basis is not well defined for
all the points. For instance, the projection of (1/2, 1/2, 0, . . . , 0) is not defined. We decide
arbitrarily to retain the first closest vector of the canonical basis as the final projection when
more than one vector is eligible.

(2.26) PE (p1, . . . , pn) = Ej with j = argmini=1..n pi,

where Ej denotes the jth vector of the canonical basis.
Notice that U = (‖u− ci‖22)i is a vector of weights such that Ui = ‖u− ci‖22.
The following theorem ensures the convergence of (un, pn, wn) to a fixed-point with Algo-

rithm 2.
Theorem 2.9. Consider the application of Algorithm 2 to the problem (2.20).
Let H(w) = χE(w), G(u) = χR(u), and h(u,w) = λ

2

∫
Ω

∑C
i=1wi‖u− ci‖22.

If the C candidates are all different (this is not a restricted hypothesis), the sequence
(un, pn, wn) performed by Algorithm 2 converges to a critical pseudo saddle-point of the prob-
lem (2.20).

1In (2.24), the values of Umax, Umin, Vmax, and Vmin are standard values equal, respectively, to 111.18,
−111.18, 156.825, and −156.825.
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Proof.
(a) Convergence of wn. Fixed-points of the algorithm are (u∗, p∗, w∗) ∈ U ×P ×W such

that ∀(u, p, w) ∈ U × P ×W,

(2.27)
〈Ku|p∗〉 − F ∗(p∗) + G(u) + h(u∗, w) + H(w) + h(u,w∗)

≥ 〈Ku∗|p〉 − F ∗(p) + G(u∗) + 2h(u∗, w∗) + H(w∗).

We want to prove the convergence of the sequence wn. To this end, we want to show
that cluster points are isolated in the dimension of W, i.e., we prove that points w∗

are isolated such that ∃(u∗, p∗) ∈ U × P and (2.27) is verified.
Let us consider a larger set of points by particularizing p = p∗ and u = u∗. We will
show that points (w∗) such that ∃(u∗, p∗) ∈ U × P and ∀(u,w) ∈ U ×W,

(2.28) H(w) + h(u∗, w) ≥ H(w∗) + h(u∗, w∗),

are isolated. We prove that minimizers of
∫
Ω

∑
i wi‖u∗ − ci‖22 + χE (w) are isolated.

These minimizers are on the canonical basis which constitutes a set of isolated points.
Thus, points w∗ verifying (2.27) are isolated. Finally, since wn is on a finite set and
wn+1 − wn → 0 when n→ +∞, wn converges.

(b) Convergence of (un, pn, wn). Since the weights wn are in a discrete set and converge,
they reach a fixed-point w∗ from a certain rank. Algorithm 2 becomes the one of [6]
applied to the saddle-point problem,

(2.29) min
u

max
p
〈Ku|p〉 − F ∗(p) +

λ

2

∫
Ω

C∑
i=1

w∗
i ‖u− ci‖22 + χR(u) ,

and converges to a fixed-point which is a critical pseudo saddle-point of the problem
(2.20).

In practical experiments, in order to know if the convergence is reached, the number of
changing weights between two iterations is computed. The convergence of the algorithm is
performed when the number of changing weights is sufficiently small, e.g., less than 10 (see
section 2.4).

2.3.3. Implementation details. We use the following definition for the discrete chromi-
nance channels u : R2 → R

2:

(2.30) u(k, l) = (U(k, l), V (k, l)) := (uk,l,1, uk,l,2).

The discrete gradient ∇ and divergence div operators are defined as in [3]. The following
definitions stand for an image of size N ×M with two channels.

Definition 2.10. Let

(2.31) ∇uk,l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{
uk+1,l,1 − uk,l,1 if k < N ,

0 if k = N ,{
uk,l+1,1 − uk,l,1 if l < M ,

0 if l = M .
...{

uk,l+1,2 − uk,l,2 if l < M ,
0 if l = M .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Next, we use the dual operator:

(2.32) div(p)k,l =

⎧⎪⎨
⎪⎩

p1k,l − p1k−1,l if 1 < k < N ,

p1k,l if k = 1,

−p1k−1,l if k = N

+ · · · +

⎧⎪⎨
⎪⎩

p4k,l − p4k,l−1 if 1 < l < M ,

p4k,l if l = 1,

−p4k,l−1 if l = M.

In the convex case, the behavior of primal dual algorithms has been studied in [6]. For one
channel, the square of the operator norm of the divergence, neglecting borders effects, is equal
to 8 (see [7, Remark, p. 92]). The convergence of this algorithm to a minimizer is verified for
τ, σ > 0 such that τσ < 1/8 (see [6, Theorem 1]). In the case of two color channels, neglecting
borders effects, and simplifying to a square image,

(2.33)

‖div p‖22 =
∑

1≤k≤N,1≤l≤M,

(
p1k,l − p1k−1,l + · · · − p4k,l−1

)2
≤ 8

∑
1≤k≤N,1≤l≤M,

(
p1k,l

)2
+ · · ·+ (

p4k,l−1

)2
≤ 16‖p‖22.

Choosing p1k,l = p2k,l = · · · = p4k,l = (−1)k+l, we obtain

(2.34) κ = |||div ||| = sup
‖p‖≤1

‖div p‖2.

The norm of the divergence operator can be approximated with κ = 16−O(M.N). The value
16 is retained for the square of the norm of the operator div, equal to the gradient operator
one (Theorem IV.5.6 in [27]). Finally, we set the time steps such that 16τσ < 1 [7].

2.4. The choice of the parameter ρ. While Algorithm 2 converges to a critical point,
the choice of the parameter ρ is not clear. Its influence on the algorithm is studied here, and
we propose an asymptotic value.

We remark that in the hypotheses of Theorem 2.7, no bound is needed on the parameter
ρ. A simplification of the algorithm is performed by taking this parameter as high as possible.
If ρ is large enough, the problem
(2.35)

wn+1 = proxρH+ρh(un,.) (wn) = argminw ‖w̃n −w‖22 + ρ

(
λ

2

∫
Ω

C∑
i=1

wi‖u− ci‖22 + χE(w)

)

becomes

(2.36) wn+1 = argminw

∫
Ω

C∑
i=1

wi‖u− ci‖22 + χE(w).

In the case of (2.36), the value of wn+1 does not depend on wn and the final algorithm is
reduced to Algorithm 3, where Cun stands for the closest candidate of un in R

2.
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Algorithm 3. Minimization of (2.20).

1: w = 1/C and u0 =
∑C

i=1wici
2: p0 ← ∇u
3: for n ≥ 0 do
4: pn+1 ← PB (pn + σ∇un)

5: un+1 ← PR

(
un + τ

(
div(pn+1) + λCun

)
1 + τλ

)

6: un+1 ← 2un+1 − un

7: end for

(a) Source (b) Target

(c) Labeling provided by Algorithm 2 with ρ = 103 (d) Labeling provided by Algorithm 3

Figure 5. Comparison of the weights and the labeling (
∑C

i=1 wici) obtained with Algorithms 2 and 3.

The formulation of Algorithm 3 has the advantage to be compact and is easy to implement
because it has one parameter less than Algorithm 2. We now propose to compare the impact
of Algorithms 2 and 3 on the final labeling. All the results presented in this section have been
performed with Figure 5(a) as the source image and Figure 5(b) as the target image.

We first provide a numerical study in order to show the influence of the parameter ρ and to
demonstrate that Algorithm 3 is the most relevant choice for a regularized labeling. Figure 6
shows the number of changing weights between wn and wn+1 for Algorithms 2 and 3. These
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Figure 6. Number of weights changing during the iterations of Algorithm 2 with ρ = 103 (blue curve),
ρ = 104 (cyan curve), ρ = 105 (red curve), ρ = 106 (green curve), and Algorithm 3 corresponding to ρ = +∞
(black curve). At the convergence of the algorithms, the number of changes is very low.

curves are performed with images visible on Figure 5. Remark that, at each iteration, the
weights are modified. In the case of ρ = 103 (blue curve) in Algorithm 2, the number of
changing weights is low and becomes rapidly equal to 0. With ρ = 106 (green curve), the
curve decreases more slowly. With Algorithm 3, the curve decreases slowly. The convergence
of Algorithm 3 is therefore able to provide results more different from the initialization and
has a higher dynamic. It means that the algorithm is able to change the label of a pixel in
order to take into account the regularity of un. A high value of ρ is thus preferable. This
value has no influence on the rate of decreasing of the global functional. Finally, after 5000
iterations, about 5 weights are modified per iteration. It represents only 0.0005% of the
weights, confirming that wn numerically converges.

We now propose to compare the quality of the results provided by Algorithm 2 with
Algorithm 3. We analyze the difference between them in terms of labeling (obtained by∑

iwici). To this end, we use ρ = 103 in Algorithm 2. Figure 5 shows the two labelings
provided by the algorithms. We remark that Figure 5(c) has halos near strong contours and
regularities on constant parts. We show that, contrary to Algorithm 3, Algorithm 2 is not
able to fully take into account the regularization in the labeling.

Figure 7 shows the functional decreasing during the convergence of the algorithm. Here,
the values of the functional are computed during the iterations. These values become asymp-
totically constant, which shows the numerical convergence of Algorithm 3.

3. Experimental results and discussions. In this section, we propose an experimentation
of our method and a comparison with state-of-the-art methods. In all experiments, parameters
will be σ = 0.005, τ = 5, λ = 0.005, and γ = 25. The exemplar-based results are provided
with eight candidates extracted with the method described in detail in [33].
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Figure 7. Value of the functional during the convergence of Algorithm 3.

(a) Without coupling (b) Our model

Figure 8. Comparison of our method with the classical TV . Coupling the channel is useful in order to
provide good results with the total variation.

3.1. Influence of the coupling on practical results. One of our contributions is the
introduction of a novel TV regularization term. In Figure 8 we compare our model with
a version without coupling. This result is provided by replacing TVC by the classical total
variation on chrominance channels, or by taking γ = 0 in our model. These results have been
performed with 5(a) as the source image and 5(b) as the target image. We see that the result
without coupling leads to a lot of halos. There are some melting of colors, and the image does
not seem realistic.

3.2. Luminance-chrominance model vs. state-of-the-art exemplar-based methods. Fig-
ure 9 shows a comparison of exemplar-based colorization provided by the method of [20], [40],
[4], and ourselves. The given source and target images are presented in the first and the second
column. Figure 10 shows zooms on results. The results of Welsh, Ashikhmin, and Mueller [40]
present an unrealistic color in the sky, due to texture features which are too simple to well
differentiate all the parts of the image. In the second image, the methods of [20] and ourselves
provide promising results. In the second image, the approach of [4] fails because the postpro-
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Source Target [20] [4] [40] Our model

Figure 9. Comparison of our method with Gupta et al. [20], Bugeau, Ta, and Papadakis [4] and Welsh,
Ashikhmin, and Mueller [40] for images with thin structures. On the left, the source image in color and the
target image in gray-scale. Our results are comparable to [20], but our algorithm works without segmentation.

[20] [4] [40] Our model

Figure 10. Zoom in on the third line of Figure 9.

cessing used in this method is not hue consistent. Due to the employed texture features, the
method of [20] is not able to colorize the background. In the third image, the approaches of
[40] and [4] present some problems near strong contours. With the coupled TV regulariza-
tion, our method cannot produce halos near strong contours. Results of Gupta et al. [20] are
of good quality, but their method fails on thin structures. This is due to the segmentation
step. This last image is only well colorized by our approach. Finally, our method provides a
colorization much faster than the one of [20], due to the lack of segmentation. It is also faster
than the one of [4] that needs a projection onto the simplex, which is time consuming.

Figure 11 provides additional colorization results on different types of images. This figure
clearly shows the good performance of our method to provide exemplar-based colorization.

4. User’s interactions. The proposed method, with (unoptimized) GPU implementation,
can colorize an image of size 370×600 in approximately 1 second. This computation time
allows us to propose an extension of our model by including user interactions and to provide
a near real-time image colorization. This section presents how such interactions, represented
by the user’s scribbles, can be directly introduced in our model.

The scribbles can either be given by the user before or added in an interactive or an
iterative way. When a source is provided, the first step consists in extracting for each pixel
a set of eight candidates [4] and the weights are initialized as w = 1/C with C the number
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Source Target Exemplar-based result

Figure 11. Results obtained with our model on different types of images.

of candidates extracted from the source. The scribble information introduced into the model
only affects the weights and the number of candidates. More precisely, for each pixel, a new
candidate per scribble is added. Its value is the chrominance of the given scribble. When
scribbles candidates are present, their initial weights rely on the geodesic distance. Pixels
that have a low geodesic distance to a scribble will more likely get their final color from this
scribble. At the opposite for pixels having a higher geodesic distance, this new candidate will
have no influence onto the colorization result. The variable w is projected onto the simplex Δ
(see (2.3)) before running the algorithm. The variable u is set to

∑
iwici and the functional

is minimized using this initialization.
Figure 12 presents a first example of a unified image colorization. Figures 12(a) and

12(b) show the source and the target images. Figure 12(c) corresponds to the exemplar-based
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(a) Source (b) Scribbles (c) Exemplar (d) Manual (e) Our model

Figure 12. First example of image colorization with multiple priors. (a) Source image, (b) target image,
(c) exemplar-based result, (d) scribbles-based result, (e) with both priors.

colorization result provided by our model. In this figure, the sky is not correctly colorized
since it appears brown instead of blue as in the ruins’ main door. Moreover, blue colors appear
on the floor. Figure 12(d) shows the corrections of the user where three scribbles are added
in order to correct the first (exemplar-based) colorization result (Figure 12(c)). Figure 12(e)
illustrates the advantage of the proposed extended image colorization since the user with less
effort obtained the desired result. Finally, this result also highlights that our model is well
adapted to preserve the color contours.

Figure 13 presents more results and illustrates the advantage of using our image colo-
rization model as compared to only using a source (fourth column) or some scribbles (fifth
column). Colorization results of the last column of Figure 13 are clearly better than the ones
obtained with one prior only. This experiment also highlights that old photographs and faces
are known to be hard to colorize as remarked, e.g., in [9]. Indeed, old photographs contain a lot
of noise and the texture is usually degraded. Face images contain very smooth parts, e.g., the
skin and the background is rarely suitable. Nevertheless, very promising results are obtained
with our method. Moreover, the additional prior given by the scribbles of the user does not
only have a local effect. Indeed, in the last result of Figure 13, the blue scribble needed in order
to colorize the sky through the arch also improves the sky color at the bottom left of the image.

5. Conclusion. In this paper, a variational image colorization model is proposed. Our
variational model includes a total variation term which couples luminance and chrominances
channels. With this representation, the contours of the colorized image are well preserved.
An algorithm is provided and its convergence is theoretically and numerically proven. Its
implementation is fast enough to propose an interactive method in which the user can draw
scribbles in order to provide colors not present in the source or to correct the results from
the exemplar-based approach. We plan in the future to improve the results of the exemplar-
based methods by studying new features to compare source and target patches. Next, we will
explore quantitative metrics to measure the quality of the results. Finally, the extension to
video colorization will be addressed.

Appendix A. The generic algorithm. In this paper, we give theoretical elements ensuring
the convergence of our algorithm with some assumptions on the critical points.

Algorithm 1 is recalled in Algorithm 4. Algorithm 4 differs from the original one of [6].
First, the minimization problem is convex w.r.t. each variable, but it is not convex w.r.t. the
couple (u,w). Second, there is no relaxation on the variable w.
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Source Scribbles Exemplar Manual Both

Figure 13. Advantage of the proposed extended image colorization as compared to only exemplar-based or
scribble-based information. From left to right: the source, the target with the scribbles added by the user, the
result with only the source, the result with only the scribbles, and the result with our approach.

This first result is a key ingredient to show the convergence of Algorithm 4.
Lemma A.1. There exists (û, p̂, ŵ) verifying (2.17).
Proof. ∀w ∈ W the problem (2.13) admits a saddle-point (û, p̂). Thus, there exists (û, p̂)

such that ∀(u, p, w) ∈ U × P ×W:

(A.1) 〈Ku|p̂〉 − F ∗(p̂) + G(u) + h(u,w) ≥ 〈Kû|p〉 − F ∗(p) + G(û) + h(û, w).

Equation (2.17) is obtained by summing (2.14) and (2.16) applied to û.
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Algorithm 4. Primal-dual-like algorithm.
1: for n ≥ 0 do
2: pn+1 ← proxσF ∗ (pn + σKun)
3: wn+1 ← proxρH+ρh(un,.) (wn)

4: un+1 ← proxτG+τh(.,wn+1)

(
un − τK∗pn+1

)
5: un+1 ← 2un+1 − un

6: end for

Theorem A.2. Fixed-points of Algorithm 4 verify (2.18), i.e., fixed-points of the algorithm
are critical pseudo saddle-points.

Proof. Let us consider (u∗, p∗, w∗) a fixed-point of the algorithm. We recall a characteri-
zation of the proximal operator of a convex function f on a Hilbert space E:

(A.2) r = proxf (s)⇔ ∀t ∈ E , 〈t− r|s− r〉+ f(r) ≤ f(t).

We write three inequalities from the three lines:

(A.3) p∗ = proxσF ∗ (p∗ + σKu∗) .

With the characterization (A.2), we then obtain ∀p ∈ P
(A.4) 〈p− p∗|p∗ + σKu∗ − p∗〉+ σF ∗(p∗) ≤ σF ∗(p).

Simplifying, we obtain

(A.5) 〈p− p∗|Ku∗〉+ F ∗(p∗) ≤ F ∗(p).

Assuming that

(A.6) w∗ = proxρH+ρh(u∗,.)(w
∗),

we obtain ∀w ∈ W
(A.7) H(w∗) + h(u∗, w∗) ≤ H(w) + h(u∗, w).

This equation holds true even if w∗ is not unique.
Recalling that, the third step of Algorithm 4 reads

(A.8) u∗ = proxτG+τh(.,w∗) (u∗ − τK∗p∗) ,

and we have ∀u ∈ U
(A.9) −〈u− u∗|K∗p∗〉+ G(u∗) + h(u∗, w∗) ≤ G(u) + h(u,w∗).

Summing now (A.5), (A.7), and (A.9) leads to ∀(u, p, w) ∈ U × P ×W

(A.10)
〈Ku|p∗〉 − F ∗(p∗) + H(w) + G(u) + h(u∗, w) + h(u,w∗)

≥ 〈Ku∗|p〉 − F ∗(p) + H(w∗) + G(u∗) + h(u∗, w∗) + h(u∗, w∗).

Fixed-points of the algorithm are thus critical pseudo saddle-points.
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Appendix B. Proof of Theorem 2.7. We now give the proof of Theorem 2.7, inspired
from the one of Theorem 1 of [6].

Notice that with Algorithm 4, all the following holds true even if proxρH+ρh(un,.) is an

arbitrary point of the set of minimizers of
‖w−wn‖22

2ρ + H(w) + h(un, w).
Proof.
(a) Bound of the sequence. We write the three iterations in the general form:

(B.1)

pn+1 = proxσF ∗ (pn + σKu) ,
wn+1 = proxρH+ρh(u,.) (wn) ,

un+1 = proxτG+τh(.,wn+1) (un − τK∗p) ,

u and p denote a relaxation of the previous iterates. This relaxation will be different
for the variables u and w. Due to the convexity of the functions, ∀(u, p, w) ∈ U×P×W
we deduce the following three inequalities:

(B.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F ∗(p) ≥ F ∗(pn+1) +

〈
pn − pn+1

σ
|p− pn+1

〉
+

〈
Ku|p− pn+1

〉
,

H(w) + h(w, u) ≥ H(wn+1) + h(wn+1, u) +

〈
wn − wn+1

ρ
|w − wn+1

〉
,

h(wn+1, u) + G(u) ≥ G(un+1) + h(wn+1, un+1)

+

〈
un − un+1

τ
|u− un+1

〉
+

〈
K(u− un+1)|p〉 .

We detail the computation of the second inequality below. Since

(B.3) wn+1 = proxρH+ρh(u,.)(w
n) ,

from the relation (A.2), we have ∀w ∈ W

(B.4)
〈
w − wn+1|wn − wn+1

〉
+ ρH(wn+1) + ρh(u,wn+1) ≤ ρH(w) + ρh(u,w).

Simplifying by ρ > 0, we obtain the second line of (B.2).
Summing the three inequalities (B.2) and using Cauchy–Schwarz inequality, we obtain
(B.5)
‖p − pn‖22

2σ
+
‖u− un‖22

2τ
+
‖w − wn‖22

2ρ

≥ [
〈
Kun+1|p〉− F ∗(p) + G(un+1) + H(wn+1) + h(u,wn+1) + h(un+1, wn+1)]

− [
〈
Ku|pn+1

〉− F ∗(pn+1) + G(u) + H(w) + h(u,wn+1) + h(u,w)]

+
‖p − pn+1‖22

2σ
+
‖u− un+1‖22

2τ
+
‖w − wn+1‖22

2ρ

+
‖pn − pn+1‖22

2σ
+
‖un − un+1‖22

2τ
+
‖wn − wn+1‖22

2ρ

+
〈
K(un+1 − u)|pn+1 − p

〉− 〈
K(un+1 − u)|pn+1 − p

〉
.
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We choose p = pn+1 and u = 2un − un−1. The last line of (B.5) becomes

(B.6)

〈
K(un+1 − u)|pn+1 − p

〉− 〈
K(un+1 − u)|pn+1 − p

〉
=

〈
K((un+1 − un)− (un − un−1))|pn+1 − p

〉
=

〈
K(un+1 − un)|pn+1 − p

〉− 〈
K(un − un−1)|pn − p

〉
− 〈

K(un − un−1)|pn+1 − pn
〉

≥ 〈
K(un+1 − un)|pn+1 − p

〉− 〈
K(un − un−1)|pn − p

〉
− L‖un − un−1‖2‖pn+1 − pn‖2,

where L = |||K|||. As for a, b ∈ R and α > 0, the inequality

(B.7) 2ab ≤ αa2 + b2/α

holds, and we obtain

(B.8) −L‖un − un−1‖2‖pn+1 − pn‖2 ≤ Lατ

2τ
‖un − un−1‖22 +

Lσ

2ασ
‖un − un−1‖22.

Choosing α =
√

σ/τ and summing (B.5) and (B.8)
(B.9)
‖p− pn‖22

2σ
+
‖u− un‖22

2τ
+
‖w − wn‖22

2ρ

≥ [
〈
Kun+1|p〉− F ∗(p) + G(un+1) + H(wn+1) + h(u,wn+1) + h(un+1, wn+1)]

− [
〈
Ku|pn+1

〉− F ∗(pn+1) + G(u) + H(w) + h(u,wn+1) + h(u,w)]

+
‖p − pn+1‖22

2σ
+
‖u− un+1‖22

2τ
+
‖w − wn+1‖22

2ρ
+ (1−√στL)

‖pn − pn+1‖22
2σ

+
‖un − un+1‖22

2τ
−√στ ‖u

n − un−1‖22
2τ

+
‖wn − wn+1‖22

2ρ

+
〈
K(un+1 − un)|pn+1 − p

〉− 〈
K(un − un+1)|pn − p

〉
.

Now, summing with n from 0 to N−1, it follows that ∀u, p, and w with the convention
that u−1 = u0 and w−1 = w0

(B.10)
N∑

n=1

{
[
〈
Kun+1|p〉− F ∗(p) + G(un+1) + H(wn+1) + h(u,wn+1) + h(un+1, wn+1)]

− [
〈
Ku|pn+1

〉− F ∗(pn+1) + G(u) + H(w) + h(u,wn+1) + h(u,w)]
}

+
‖p− pN‖22

2σ
+
‖u− uN‖22

2τ
+
‖w − wN‖22

2ρ

+ (1−√στL)

N−1∑
n=1

‖pn − pn−1‖22
2σ

+ (1−√στL)

N−1∑
n=1

‖un − un−1‖22
2τ

+

N−1∑
n=1

‖wn − wn−1‖22
2ρ

+
‖uN − uN−1‖22

2τ
+
‖wN − wN−1‖22

2τ

≤ ‖p − p0‖22
2σ

+
‖u− u0‖22

2τ
+
‖w − w0‖22

2ρ
.
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From (B.7) and using Cauchy–Schwarz,

(B.11)
〈
K(uN − uN−1)|pN − p

〉 ≤ ‖uN − uN−1‖22
2τ

+ τσL2 ‖p− pN‖22
2σ

,

and we write the inequality
(B.12)

N∑
n=1

{
[
〈
Kun+1|p〉− F ∗(p) + G(un+1) + H(wn+1) + h(u,wn+1) + h(un+1, wn+1)]

−[
〈
Ku|pn+1

〉− F ∗(pn+1) + G(u) + H(w) + h(u,wn+1) + h(u,w)]
}

+ (1− τσL2)
‖p− pN‖22

2σ
+
‖u− uN‖22

2τ
+
‖w − wN‖22

2ρ

+ (1−√στL)

N−1∑
n=1

‖pn − pn−1‖22
2σ

+ (1−√στL)

N−1∑
n=1

‖un − un−1‖22
2τ

+

N−1∑
n=1

‖wn − wn−1‖22
2ρ

+
‖wN − wN−1‖22

2ρ

≤ ‖p − p0‖22
2σ

+
‖u− u0‖22

2τ
+
‖w − w0‖22

2ρ
.

Choosing (u, p, w) as a pseudo saddle-point of the problem and denoting it by (û, p̂, ŵ),
we have

(B.13)

〈
Kun+1|p̂〉− F ∗(p̂) + G(un+1) + H(wn+1) + h(u,wn+1) + h(un+1, wn+1)

≥ 〈
Kû|pn+1

〉− F ∗(pn+1) + G(û) + H(ŵ) + h(û, wn+1) + h(u, ŵ).

Thus, the two first lines of (B.12) are nonnegative and the first point of the theorem
follows because τσL2 < 1.

(b) The existence of a cluster point which is a critical pseudo saddle-point. Since U , P,
andW are of finite dimensions, the first point of the theorem means that the sequence
(un, pn, wn) produced by the algorithm is bounded. Therefore, it admits a subsequence
(unk , pnk , wnk) which converges to (u∗, p∗, w∗). The relation (B.12) (taking a pseudo
saddle-point, using the positivity of the terms and observing the convergence of series)
implies that

(B.14) lim
n

(un − un−1) = lim
n

(pn − pn−1) = lim
n

(wn − wn−1) = 0.

Thus unk−1 , unk−1, and unk−1 converge, respectively, to u∗ , p∗, and w∗ . It follows
that (u∗, p∗, w∗) is a fixed-point of the algorithm and a critical pseudo saddle-point of
the problem.
Remark that this last point proves the existence of a critical pseudo saddle-point of
the problem.

(c) Convergence. The cluster points are critical pseudo saddle-point thanks to The-
orem A.2, and thus they are isolated. Hence, the sequence converges to a critical
pseudo saddle-point according to Proposition C.1 and (B.14).



LUMINANCE-CHROMINANCE MODEL FOR IMAGE COLORIZATION 561

Appendix C. Useful proposition. The next proposition is useful to prove the convergence
of a sequence in the general case, but it can be ignored for the particular case of Algorithm 2.

Proposition C.1. Let (un)n be a sequence in a space of finite dimension, such that
• un is bounded;
• cluster points of un are isolated;
• limn u

n+1 − un = 0.
Then the sequence (un)n converges.

Proof. By contradiction, let us assume that there are at least two cluster points. Since
cluster points are isolated, ∃A > 0 such that if d and e are two cluster points, ‖d− e‖ > 2A.

Since the sequence of differences between two terms converges to 0, ∃n0 such that ∀n > n0,
‖un+1 − un‖22 ≤ A/4.

Let us denote as S the set of cluster points of un. We define

(C.1) V :=
⋃
s∈S

B(s,M)

and consider B(u0, R) such that (un)n ∈ B(u0, R) and V ⊂ B(u0, R).
An infinite number of terms of the sequence un belong to K := B(u0, R) \ V because

‖un+1 − un‖22 converges to 0. Indeed, if not, an infinite number of terms of the sequence are
located at the interior of one of the balls B(s,R). So, either the sequence converges, which
proves the theorem, or there is a cluster point at a distance strictly less than A of another
cluster point, which is impossible.

If we consider the sequence (vn)n = (un)n∩K, it contains an infinite number of terms in a
bounded set B(u0, R). Thus, it admits a cluster point which is a cluster point of un. However,
as cluster points of un are in V, this leads to a contradiction. Thus, the initial hypothesis is
rejected and the sequence converges.
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